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MANUAL PROCEDURE FOR D E = C m I N G  POSITION I N  

SPACE FROM ONBOAIiD OPTICAL MEASUREMENTS 

By Harold A. Hamer  
Langley Research Center 

SUMMARY 

A method i s  developed f o r  manually determining a posi t ion f i x  i n  space. 
Basically, t he  method employs four  nonsimultaneous angular measurements of 
c e l e s t i a l  bodies, along with precalculated data  f o r  a nominal t ra jec tory ,  t o  
determine vehicle posi t ion.  
calculations required f o r  one posi t ion f i x  being adequately performed with a 
s l i d e  rule i n  l e s s  than 15 minutes. 

The method i s  simple and accurate, with a l l  onboard 

The various equations required by t h e  navigator, as well  as those essen- 
tial f o r  t he  precalculations,  are outlined i n  d e t a i l .  Although t h e  method i s  
developed and applied t o  Earth-Moon space, it could serve equally as well  f o r  
interplanetary space. The important d e t a i l s  of t h e  method discussed are the  
l i n e a r i t y  character is t ics ,  t h e  e f f ec t  of star se lec t ion  on accuracy, and the  
procedure t o  convert t h e  nonsimultaneous measurements t o  a common t i m e .  

The method i s  shown t o  have a r e l a t ive ly  high degree of l inear i ty ;  there- 
fore,  it does not require t h e  ac tua l  in jec t ion  t i m e  t o  be close t o  a nominal 
i n j ec t ion  time f o r  good accuracy i n  determining posi t ion.  On the  bas i s  of an 
e r ro r  analysis of t h e  method, t h e  root-sum-square posi t ion e r ro r  over most of 
t h e  Earth-Moon distance i s  shown t o  be about 35 kilometers f o r  a standard- 
deviation e r ro r  of 10 arc-seconds i n  t h e  angular measurements. Also ,  i n  rela- 
t i o n  t o  t h e  accuracy character is t ics ,  almost any set of stars selected f o r  t he  
measurements w i l l  give good resu l t s ,  providing t h a t  t h e  star used i n  the  range 
determination l i e s  within k30° of t h e  Earth-Moon-vehicle plane. 

INTRODUCTION 

I n  manned space missions t h e  navigation and guidance w i l l  normally be 
accomplished by automatic o r  semiautomatic procedures. (For example, see 
refs. 1, 2, and 3 . )  
f o r  these operations would be a desirable  and, i n  some cases, a necessary fea- 
tu re .  
p a r t s  of t h e  midcourse navigation and guidance i n  t h e  event of a malfunction 
i n  t h e  space computer o r  power supply. 
check on some of t he  results produced by t h e  more complex automatic systems. 

The inclusion of manual procedures ( f o r  example, r e f .  4)  

With a manual system t h e  astronaut could supposedly perform t h e  e s sen t i a l  

A l s o ,  t he  manual system could provide a 



The main requirements f o r  any manual system would be simplicity,  good accuracy, 
and fast calculat ion procedures. 

A s  a pa r t  of t h e  overa l l  navigation and guidance problem, a method i s  
developed i n  t h i s  report  which meets the  requirements f o r  manual posi t ion f ix ing .  
Basically, t h e  method employs four  nonsimultaneous angular measurements (taken 
by t h e  same type of optical-measuring instrument) t o  determine range from a body 
center and then t o  determine t h e  vehicle-posit ion coordinates. 
based on t h e  as t ronaut ' s  possession of nominal-trajectory information and on 
cer ta in  precalculated da ta  retained e i t h e r  i n  chart  o r  t a b l e  form. The astro- 
naut can adequately perform a l l  necessary calculat ions with a s l i d e  ru l e  and a 
scratch pad. 

The method i s  

I n  t h e  present report  t h e  method i s  applied t o  an Earth-Moon t ra jectory,  . 

although it could serve equally as w e l l  f o r  interplanetary t r a j ec to r i e s .  Impor- 
t a n t  d e t a i l s  discussed are the  l i n e a r i t y  charac te r i s t ics  of t he  method and t h e  
e f fec t  of star se lec t ion  on accuracy. The procedure t o  convert the  nonsimulta- 
neous measurements t o  a common t i m e  i s  a l so  given. 

An e r ro r  analysis  i s  performed t o  show t h e  accuracy charac te r i s t ics  of t h i s  
method. The accuracy, of course, cannot be expected t o  approach t h a t  of auto- 
matic systems which use s t a t i s t i c a l  reduction of a la rge  number of various types 
of nonsimultaneous measurements. 

SYMBOLS 

A angle formed at  vehicle by l i n e  of s igh t  t o  Earth center and l i n e  of 
s igh t  t o  Moon center 

A%4B,m,m difference between ac tua l  values and nominal values 

B 

b magnitude of vector perpendicular t o  plane containing Tev and 

C 

C constant ( see  eq. (11)) 

D,E,F 

angle formed at  Earth center by l i n e  t o  vehicle and l i n e  t o  Moon center 

angle formed a t  Moon centek. by l i n e  t o  vehicle and l i n e  t o  Earth center 

measurement quant i t ies  ( see eqs . (13) ) 
h magnitude of vector perpendicular t o  instantaneous Earth-Moon-vehicle 

plane 

2,m,n d i rec t ion  cosine of l i n e  of s ight  t o  star with respect t o  X-, Y-, 
and Z - a x i s ,  respectively 

P,Q,R,S constants f o r  any selected s e t  of th ree  stars (see eqs. (17)) 

r 1/* range o r  distance, (x2 + y2 + z2) 
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A?? incremental range, ra rn 

rss root sum square (used as measure of posit ion-fixing accuracy), 

Rb body radius 

T time from in j ec t ion  

t t i m e  

A t  increment i n  t i m e  between common time (time f o r  Itcommon" o r  representa- 
t ive value measurement) and time at  which measurement i s  taken 

x,y, z vehicle-centered rectangular right-hand axis system i n  which X - a x i s  
i s  i n  t h e  d i rec t ion  of Aries, XY-plane i s  p a r a l l e l  t o  Earth equato- 
rial plane, and %axis is  i n  t h e  d i rec t ion  of north c e l e s t i a l  pole 

Xr,Yr,Zr ro ta t ing  rectangular right-hand axis system i n  which X r - a x i s  l i e s  along 
Earth-Moon l ine ,  XrYr-plane i s  i n  Earth-Moon plane, and Z r - a x i s  i s  
i n  northerly d i rec t ion  

X,Y,Z posi t ion coordinates i n  rectangular right-hand axis system 

5 7  Y r ,  zr posi t ion coordinates i n  ro ta t ing  rectangular right-hand axis  system 

. . .  
X,Y, = veloci ty  coordinates i n  rectangular right-hand axis system 

&,4?,b posi t ion off nominal t r a j ec to ry  i n  direct ion of x-, y-, and z-axis, 
respectively 

a one-half of angular diameter of body as viewed from vehicle 

6 angle formed at vehicle  by l i n e  t o  star and i t s  project ion i n  the  
instantaneous Earth-Moon-vehicle plane 

9 angle formed a t  vehicle by l i n e  of s ight  t o  star and l i n e  of s igh t  
t o  body center 

Q angle formed at  vehicle by l i n e  t o  Earth and project ion of l i n e  t o  
star i n  t h e  instantaneous Earth-Moon-vehicle plane 

(J standard-deviation value 

Subscripts: 

1 9 %  3 star 1, star 2, and star 3 
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I, 111, IV 

a 

A 

e m  

ev 

mv 

n 

r 

Lo? 

unc 

X,Y,Z 

~ , r U . , h  

0 

Notation: 

c I-’ 

I I  

spec i f ic  stars 

ac tua l  (measured) value 

angle formed at  vehicle by l i n e  of s igh t  t o  Earth center and l i n e  of 
s igh t  t o  Moon center * 

I 

distance between Earth center and Moon center 

dis tance o r  range from vehicle t o  Earth center 

distance or range from vehicle t o  Moon center 

nominal value 

range 

incremental range, ra - rn  

uncorrected 

component i n  d i rec t ion  of X-, Y-, and Z - a x i s ,  respectively 

posi t ion off nominal t r a j ec to ry  i n  direct ion of x-, y-, and z-axis, 
respectively 

angle formed at  vehicle by l i n e  of s igh t  t o  star and l i n e  of s igh t  
t o  body center 

inverse of square matrix 

column matrix 

ab solute  value 

B a r  over a symbol indicates  a vector. 

- BASIC METHOD 

There are many combinations of op t i ca l  measurements which can be used f o r  
posi t ion f ixing.  For example, reference 5 shows 13 d i f f e ren t  combinations of 
angular measurements which incorporate s ight ings on t h e  Earth, Moon, Sun, or 
stars t o  y i e ld  solutions of vehicle posi t ion i n  Earth-Moon space. The bas ic  
requirements f o r  a manual posit ion-fixing procedure are t h a t  i s  must be simple 
enough t o  permit rapid calculations ( severa l  minutes) and s t i l l  give accurate 



r e su l t s .  O f  t h e  various combinations of measurements, t he  only one t h a t  would 
seem applicable t o  t h i s  case i s  one t h a t  uses star-to-body-center angular m e a s -  
urements, together  with a range measurement, as i l l u s t r a t e d  i n  f igure  1. 

Z 

To star 1 I 

\/T star 

X 

Figure 1.- Required measurements for a position fix.  

The set of t h ree  simultaneous equations which leads t o  t h e  solut ion of t h e  
vehicle-position coordinates is: 

where 2, my and n a r e  the  d i rec t ion  cosines of t h e  respective stars. It i s  
readi ly  seen t h a t  t h e  set of equations (1) can be, for t h e  most par t ,  precal- 
culated since t h e  values of 2,  my and n are known i n  advance (by select ing 
ce r t a in  stars). 
involve calculat ing numbers up t o  s i x  s ign i f icant  f igures  f o r  Earth-Moon space. 
This problem can be circumvented by employing a nominal (or reference) t ra jec-  
t o r y  for which vehicle pos i t ion  and various angles are known f o r  any t i m e  along 
t h e  t r a j ec to ry .  I n  t h i s  approach, t h e  incremental values Ax, Ay, and Az 
(distances off  t h e  nominal) could then be easily and accurately calculated from 
t h e  differences between t h e  measured values of t h e  angles and t h e  values per- 
ta in ing  t o  t h e  nominal t r a j ec to ry .  
sentat ive accuracies a re  shown i n  subsequent sections.  

The solut ion of t he  s e t  of equations (l), however, would 

The equations i n  t h i s  form and some repre- 
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As shown by t h e  set of equations (l), t he  vehicle posi t ion can be deter-  
mined by four  simultaneous measurements, those of r, el, 0 2 ,  and 0 3 .  I n  
any p rac t i ca l  case, simultaneous measurements are not possible, but a simple 
procedure can be used t o  convert nonsimultaneous measurements t o  a common t i m e ,  
as i s  subsequently shown. The range r i n  t h e  set  of equations (1) could be 
obtained by measuring the  angular diameter of t h e  body, t h a t  is, by replacing 
t h e  quantity r with %/sin a i n  which R b  i s  a known value of t h e  body 
radius. However, t h i s  type of measurement i s  r e l a t ive ly  inaccurate a t  la rge  
distances from a body and i n  Earth-Moon space can lead t o  posi t ion e r rors  on 
t h e  order of several  hundred kilometers, as shown i n  reference 6. Therefore 
some other method must be used t o  obtain a measure of t h e  range. For lunar  
t r a j ec to r i e s ,  a t r iangula t ion  procedure based on t h e  Earth-Moon-vehicle t r i ang le  
seems t o  be t h e  most simple and accurate. Here again, t h i s  procedure i s  t o  be 
used i n  conjunction with a nominal t r a j ec to ry  f o r  which t h e  range i s  known f o r  
any given t i m e  along t h e  t ra jec tory .  
section. 

The d e t a i l s  a r e  presented i n  the  following 

DERIVATION OF EQUATIONS 

Determination of Range 

I n  the  present method f o r  determining vehicle posi t ion along a lunar  tra- 
jectory, a necessary f irst  s tep  i s  t h e  determination of range t o  the  center of 
t h e  Earth. 

I n  f igure  2 the  angle 01, which can vary between Oo and 180°, l i e s  i n  t h e  
instantaneous Earth-Moon-vehicle plane. If figure 2 represents t he  vehicle 
posi t ion on a nominal t r a j ec to ry  a t  a given t i m e ,  then the incremental range 

. 

6 

T o  st ar 1 

I 

Ear 

/ 

-th 

T o  star 1 

,--- Vehicle 

,- -- Instantaneous Earth-Moon-vehicle 

/ 
I 

Moon 

r e m  Earth 

/.ev 

Instantaneous Earth-Moon-vehicle 
plane 

Moon 

Figure 2.- Variables involved in determining range. 



b e y  
E i m e  i s  obtained as follows: 

(defined as t h e  ac tua l  range minus t h e  nominal range) at  t h a t  pa r t i cu la r  

sin(A + B)  s i n  C = - s i n  A s i n  A 
r e m  rem rev = - 

or  

rev - - re, cos B + rem s i n  B cot A ( 2 )  

A s  shown i n  equation ( 2 ) ,  t h e  variables which define rev a t  a given t i m e  
are the  angles A and B; therefore: 

are, dA+- are, drev = - 
aA a B  

From equation (2). 

-rem s i n  B C S C ~ A  
are, - - -  
aA 

but 

so  t h a t  

s i n  B = - rmv s i n  A 
'em 

where 

2 
rev2 + rmv2 r e m  

2revrmv 
COS A = 

Furthermore, from equation ( 2), 

- -  are, - ',,(cos B cot A - s i n  B) 
aB 

( 3 )  

(4) 

( 5 )  

( 7 )  

. 
where t h e  angle B i s  given by equation (4)  and t h e  angle A i s  given by 
equation ( 5 ) .  The values rev, rmv, and rem are known values f o r t h e  nominal 
t r a j ec to ry  . 



The var iables  A and B i n  equation ( 3 )  r e f e r  t o  angular measurements 
which must be made onboard t h e  vehicle. The angle B cannot be measured from 
t h e  vehicle; therefore,  an angle which i s  re la ted  t o  B and which can be meas- 
ured from t h e  vehicle must be subst i tuted.  0 1  
measured between a star and the  Earth center can be used i n  t h e  following manner. 

A s  shown by f igure  2, t he  angle 

For t h e  case i n  which t h e  star i s  i n  t h e  instantaneous Earth-Moon-vehicle 
plane, 
t h e  Earth and t h e  star. 

dOl/dB = 3, where t h e  sign i s  determined by t h e  r e l a t ive  d i rec t ions  of 
Equation ( 3 ) ,  therefore,  can be wri t ten as 

where do1 represents t h e  change i n  t h e  star-to-Earth angle and c i s  e i t h e r  
fl. The equation f o r  determining c i s  given i n  appendix A. If the  star i s  
not i n  t h e  instantaneous plane, as shown i n  figure 2, dQ1 can be determined 
from t h e  right spherical  trigonometric relationship,  

cos 0 1  = cos Q1 cos 61 

o r  

s i n  9 1  
do1 = 

or  

2 112 
cos el  

do1 = ( ) del 
cos 61 - cos 9 1  

( 9 )  

Therefore, i n  terms of two angles which can be measured from t h e  vehicle (Earth 
center t o  Moon center and star-to-Earth center),  equation (8) can be wri t ten 
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or, f o r  t h e  region i n  which a change i n  rev i s  l i n e a r  with changes i n  A 
and B, 

. where 

and 

AA = A a  - An 

The incremental range Are,, then, i s  determined by t h e  two measurements Aa 

t and 
arev a r  ev and and by t h e  precalculated values of An, - - 
& ’ aB 

. Equations f o r  calculating values of 0 ,  6, and c 

which per ta in  t o  a nominal t r a j ec to ry  a re  given i n  appendix A. 

Linearity character is t ics . -  Investigation of t h e  var ia t ions of Arev with 
AA and AB f o r  a typ ica l  lunar  t r a j ec to ry  showed t h a t  a t  a given t i m e  the  
p a r t i a l s  arev/aA and arev/aB can be considered t o  be essent ia l ly  l i n e a r  
over a wide region, as indicated i n  f igure  3 .  The nominal t r a j ec to ry  used 
(70.6 hours from in jec t ion  t o  per i lune)  w a s  selected from reference 7 and i s  
shown i n  f igure  4. 
t i o n  of t h e  t ra jectory,  as wel l  as values of t h e  angles A and B. I n  f ig -  
ure 3 t he  curve f o r  Ai3 w a s  determined f romthe  re la t ions  (see f i g .  2) 

Table I presents per t inent  posi t ion and veloci ty  informa- 

rev.-sin A s i n  C = - 
rem 

and 

B = 180° - (A + C )  (13) 

where A 
The curve for AA w a s  determined from t h e  r e l a t ion  

i s  held constant a t  t h e  nominal value and i s  given by equation (6).  

s i n  A = - rem s i n  B 
rmv 
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I 

\ 
Ad 31' AB, deg 

Figure 3.- Lineari ty  charac te r i s t ics  of 

- and - f o r  a nominal d i s -  are, 
aA aB 

tance of 161,981 kilometers from cen- 
t e r  of Earth t o  vehicle.  

where 

I 
16 

12 

8 

4 

E 
. o  
Ah 

-4 

-8 

-12 

-16 -4 o 4 8 12 16 36 40 x LO4 

Figure 4.- Nominal t r a j e c t o r y - i n  ro ta t ing  
coordinate system; T denotes hours 
from in jec t ion .  

,112 

> '  
2 - 2revremcos B rmv = (rev + r e m  

2 

and B 
and (13) .  
of 16.125 hours (rev - 162,000 kilometers). 
at in jec t ion  from t h e  nominal in jec t ion  t i m e  would represent a difference i n  
range from t h e  Earth of about 13,000 kilometers. 
t h a t  t h i s  difference can be considered t o  be within t h e  l i n e a r  region. Several 
nominal or reference t r a j ec to r i e s ,  therefore,  could suf f ice  f o r  range determina- 
t i o n  f o r  a given da i ly  launch window. 

The l i n e a r i t y  charac te r i s t ics  of arev/aA and arev/aB i l l u s t r a t e d  i n  

i s  held constant at  t h e  nominal value and i s  determined by equations (12) 
The curves shown i n  f igure  3 are f o r  a nominal time from inject ion 

A t  t h i s  time a 2-hour difference 

The data  i n  figure 3 show 

f igure  3 are  representative of those over most of t h e  Earth-Moon distance.  
Actually t h e  l i n e a r  approximation f o r  
approached, as shown by t h e  der ivat ive of equation (5)  which i s  

a rev /aA improves as the  Moon i s  

, 
- -  a2rev cos A - rmv - aA2 sin2A 
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TABLE I.- NQMINAL TRAJEC'I'ORY P-ERS 

Eehicle position and velocity coordinates are vehicle centereg 

xevJ km . . . . . . .  
yev. km . . . . . .  
zev. km . . . . . .  
rev. km . . . . . .  
yw. km . . . . . .  
r,. km . . . . . .  
r,. km . . . . . .  
CeV. km/sec . . . .  
fevJ km/sec . . . .  

xmv. km . . . . . .  
zmVJ km . . . . . .  

2,. km/sec . . . .  
&. km/sec . . . .  
pmv. km/sec . . . .  
&. km/sec . . . .  
A. deg . . . . . .  
B. deg . . . . . .  
- 

l7,O€10.141 
13,826.706 
8,591.5583 
23,537.152 

-254,284.19 

342,735.63 
365,694.67 
1.3791860 
4.7862262 
2.7279185 

a2 . 24 
a4.40 
a2.38 

166°3055" 
l2Oll25" 

-189,769.15 

-129,59!.24 

xev. km . . . . . .  
yev. km . . . . . .  
Z e v . k m  . . . . . .  
+.km . . . . . .  
y,. km . . . . . .  
zmV.km . . . . . .  

r ev .km . . . . . .  

rmv. km . . . . . .  
rem.km . . . . . .  
key. km/sec . . . .  
f.,. km/sec . . . .  
ievJ km/sec . . . .  &. km/sec . . . .  
fmvJ km/sec . . . .  
&. km/sec . . . .  
A. deg . . . . . .  
B. deg . . . . . .  

23.125 

618 * 92375 
'77. 258.93 
98725 6. Og7 
202,670.61 
132 , 226.49 
126,541.42 
61. 739 . 027 
193.15 3.52 
368,158.94 

1.3058873 

a0.632 
ao.964 

0.34476699 

0.70449040 

a0.469 
1.36~3204" 

~ 9 ~ 2 6 0 "  

2 

19. 873 . 013 
28,971.665 
17,141.773 
39. 091 . 360 

.183.75 7.26 

-122,195.85 

365 J 790.69 

. 241 . 070 . 11 
326,823.12 

0.42971609 
3.7612012 
2.1078791 

. 67 
a3 . 67 

175O650" 
a1.82 

4O1099" 

31.125 

.9. 233 . 1921 
211, 785.18 
116,836.74 
242,051.73 

-113,475.61 
-101,136.23 
.49. 059 -589 
159. 725 . 06 
369,198.98 

1.1039615 
0.59265123 

&0.666 
a0.830 

-0 . 33782194 

a0.405 
132°168j" 
1.8~~997" 

Time from i n j ec t ion .  hours 

3 

20,772 * 5Z9 
41 , 465.015 
24,114.484 
52,271.918 

.179.69 7.19 
-230 . 478.64 
-.116,359.00 
314,564.62 
365 , 888.32 
0.11358018 
3.2252961 
1 * 7935755 

a 0 * 973 
a2 . 70 
a1.46 

168O725" 
10°449" 

47-12> 

-25, 632 -839 
261 , 074.69 
143,W.87 
298 , 868.83 

-78j28 7.308 
-62,762.242 
-30, 346 -349 
104,827.97 
371,160.79 

-0.31034989 
0.87009046 
0.46342536 

aO . 725 
&o . 720 

126O25 28'' 
13°316" 

a0.347 

4 

2oJ874.339 
52,416.910 
30, 189 2 8 7  
63, 989 * 558 

-176,413.57 
-2% 399 . 43 
-lll,404.98 
304 , 221.18 

365,987.50 
. 0. 041338963 

2.8804782 
1.5940144 

&O . 841 
a2.38 

. 28 
163O1262" 
1302801" 

60 

-40,898.372 
303,197.37 
165,528.05 
347J851.77 

.37. 619 . 423 
-23,101.552 
-12,316.612 
46,872.249 
373,389.42 

&-0.252 
aO . 735 
a0 .92  

o . 79926153 
0.7049282l 
0.33600494 
119O2995" 

6O907" 
~ 

5 -5 

20.28 4.239 
66.96 5. 325 
38. a 9  * 273 
79. T27*772 
,172,192.03 

~05,027.68 
290,886.84 

'209~604 -99 

366. 139 . 23 
. O . 16327614 

2 -5318916 
1-3941551 

aO . 746 
a2.08 
a1.12 

158O958" 
17O392" 

65 

.44,88 5.478 
3'5,953.95 
172,234.22 
362,637.86 
.22,76 0.254 
.12,19 4.307 
. 6 . 164.1073 
26,546.686 
374,161.41 

a-0.181 
a. . 704 

0.86291157 
&0.369 

0.73557119 
0*35OgO6V 

302592" 
llJo3074" 

10.5 

15.79 7.195 
106,257.19 
59. 747.541 
122,922.38 

-160,316.94 
-179,008.56 
.88.75 7.164 
256,170.60 
366,669.32 

1 . 9188737 
1 . 0468713 

aO . 626 
a1.50 

148°1881" 
U014 04 " 

-0.30064959 

a0.@3 

68.5 

-46,341.619 
324,980.53 
176 . 961.26 
372. 927 85 
.=. 053 -984 
-2,572.1041 
-1,558.2646 
11. 455 . 759 
374,706.77 

a0 . 00410 
a0.740 
a. . 389 

1.0488207 
0.80363455 
0.38753199 

980234" 
1'2646" 

69.5 I 
-45,992.488 

178 J 384 . 29 

. 6 ~ 9 5  1.3123 
-367.61865 

327. 676 . 34 

375,909.62 

-129.66503 
6,962.2336 
374,863.24 

&O .243 
a0 . 744 
a. .398 

1.2677780 
0.82276785 
0.40476791 

8002992" 
10184" 

aApproximate value is  given inasmuch as t h i s  value w a s  not calculated in the trajectory program used in the 
present analysis . 
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AS noted from t a b l e  I, t h e  angle A 
From t h e  der iva t ive  of equation ( 7 ) ,  

approaches 90' a s  the  Moon i s  approached. 

- a2rev (co t  A s i n  B + cos B)  -rem 
- -  

aB2 

it can be determined (by use of t he  values of A and B f r o m t a b l e  I) t h a t  
t h e  l i n e a r  approximation f o r  
approached. 

arev/aB w i l l  a l s o  improve as the  Moon is  

Effect of proximity t o  Earth-Moon l ine . -  The values of arev/aA and 
arev/aB which a r e  precalculatedpand supplied t o  t h e  astronaut i n  the  form of 
char ts  or t ab l e s  a r e  shown i n  f igure  5 f o r  vehicle  posi t ions along t h e  ascent 
port ion of t he  nominal t ra jec tory .  The p a r t i a l s  armv/aA and a r m v / a C  
required t o  determine range from t he  Moon a r e  a l s o  shown. 
approach those shown f o r  arev/aA and &,,/dB a t  distances near the  Earth. . 
It i s  t o  be noted t h a t  f o r  a posi t ion f i x  near t he  Moon higher accuracy i s  
obtained by measuring range from the  Earth r a the r  than from the  Moon, inasmuch 
as  the  geometry gives lower values for arev/aA and arev/dB. From equa- 
t i o n  (11) it i s  seen t h a t  the  e r ro r  i n  determining t h e  distance off t he  nominal 
Ar 

These values w i l l  

i s  proportional t o  the  magnitudes of t h e  p a r t i a l s .  

Ngminal distance from Earth center, r lan ev' 

32 36 I x 104 

Figure 5.- Variation over Earth-Moon d is tance  i n  p a r t i a l s  required f o r  range determination. 
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I n  f igure  5 t he  la rge  values shown f o r  arev/aA and arev/aB near t h e  
Earth occur because of t h e  close proximity of t he  vehicle t o  the  Earth-Moon 
l i n e  ( i .e. ,  t h e  angle A approaches 1800). The r e l a t ive  posi t ion of t h e  vehi- 
c l e  with respect t o  t h e  instantaneous Earth-Moon l i n e  is  shown i n  f igure 4. 
Thus, range or posit ion-fixing determination by use of equation (11) would be 
inaccurate for 'about  t h e  f i rs t  5 hours (or 75,000 kilometers) from inject ion.  
These r e s u l t s  would be typ ica l  f o r  any Earth-Moon t r a j ec to ry  f o r  any method 
which i s  based on Earth-Moon measurements. 
could be improved considerably by determining range from t h e  angular-diameter 
measurement of t h e  Earth, as shown i n  f igure  6. -The dashed curve represents 
t h e  e r r o r  i n  range f o r  an angular-diameter-measurement cr e r ro r  of 10 arc- 
seconds. 

The accuracy f o r  t he  first 5 hours 

For t i m e s  along t h e  t r a j ec to ry  except f o r  t h e  first 5 hours, t h e  e r ro r  i n  
determining range by equation (ll) i s  r e l a t ive ly  small, as shown by the  so l id  
curve i n  f igure  6. This curve represents t h e  e r ro r  i n  t h e  incremental range 
beV 
measurements A and 81 are considered t o  have random uncorrelated errors ,  
each with a standard deviation IS of 10 arc-seconds such t h a t  

along t h e  ascent portion of t h e  nominal t r a j ec to ry  where the  angular 

/ 
I < 

- 
1 

L 

/ 
I 

/ 
/ 

\ 

7 
/ 

/ 
/ 

Using Earth angular- 
diameter measurement 

Using angular measurements 
of equation (11) 

I 
I 

20 24 28 32 36 40 104 

Nominal distance from E a r t h  center, r Inn e d  

Figure 6.- Variation of error in range determination over Earth-Moon distance; u of angular- 
measurement error i s  10 arc-seconds. 



I n  f igure 6, t h e  star which i s  used t o  measure 
near) t h e  instantaneous Earth-Moon-vehicle plane so t h a t  t he  value of t he  term 

0 1  i s  assumed t o  l i e  i n  (or 

5 

4 

3 

15 2 

10 \ 

1 

30 
\ 
\ 

'rev 'rev 
'B hl 

(11) i s  1 and - = k -. 

1 

Star-to-body-center angle, e, deg 

Figure 7.- Effect of s t a r  position on accuracy of range.determination; - I -  

Effect of star selected for measurement.- The value of t h e  quantity 
2 1 - COS el 

( 2  C O S  ti1 - COS el 
q2 can vary from 1 t o  03, depending on t h e  nominal t r a j ec to ry  

and the  star selected f o r  t he  measurement of 
on the  e r ro r  i n  Ar is  shown i n  f igure  7. The e r ro r  i n  Ar is  a minimum when 

2 

81. The e f f ec t  of star posi t ion 

i s  a minimum. This quantity has i t s  minimum t h e  quantity 

with respect t o  8 a t  8 = 900 and r i s e s  rapidly as the  extreme values, 8 = 6 
and 0 = 1800 - 6, a r e  approached. The extreme values of 8 occur when the  
star posi t ion i s  i n  the  plane containing the  vehicle-Earth l i n e  and the  v e r t i c a l  
t o  t he  Earth-Moon-vehicle plane. The desired stars, therefore,  are those t h a t  
l i e  near t he  Earth-Moon-vehicle plane ( 6  
i n  t h a t  plane away from t h e  vehicle-Earth l i n e .  

cos26i - cos 2 el ( - )'" 
within about f 3 O O )  with projections 

I n  f igu re  8 values of t h e  
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. 120 

8C 
M 
0 a 

(D 

4c 

( 8 16 32 40 104 

ev' lan Nominal distance f r o m  Earth center, r 

(a) Angle between star and Earth center.  

Vega 

Ti-ocyor 

rapell€ Regulus1 I 
i 

24 32 40 104 

Nominal distance f r o m  Earth center, rev, km 

(b )  Angle between star and its pro jec t ion  
in i n s t  an t  aneous Earth-Moon-vehi c l e  
plane. 

Figure 8.- Variation of 8 and 6 over t h e  Earth-Moon d is tance  f o r  nominal t r a j ec to ry .  

angles 8 and 6 f o r  several  stars are shown along t h e  ascent portion of t he  
nominal t ra j e c t  o r y  . 

As indicated i n  f igure  8(b) ,  l a rge  changes can occur i n  6 as t h e  vehicle 
crosses "under" the  Earth-Moon l i n e  at  
t h e  Earth-Moon-vehicle plane ro ta tes  about t h e  Earth-Moon l i n e  through an angle 
of approximately 1800. 
0 of about 90°, t h e  value of 6 would go.through a range of angles close 

rev - - 40,000 kilometers. In  t h i s  region 

For t h e  star Regulus, which forms a star-to-body angle 

t o  180~. 

Determination of Vehicle Posi t ion 

A s  previously s ta ted,  equations (l), i n  t h e  form given, a r e  not convenient 
f o r  manual calculat ion of vehicle posit ion.  Tne posi t ions off  t h e  nominal 
t ra jec tory ,  however, can be eas i ly  calculated from the  following s e t  of 
equations : 

where t h e  subscript  
s c r i p t  n represents a nominal value. After subs t i tu t ing  

a represents an ac tua l  (measured) value and the  sub- 
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and 

a solut ion of t h e  s e t  of t h e  three  simultaneous equations ’(14) yields:  

& = (-$)D - (:)E - ($Az 

AX = (k)D - - (:)h 

where 

R = ( m l Z 3  - m3Z1) 

s = n123 - n p 1 )  ( J 
The parenthet ical  expressions i n  equations (16) and (17) a re  constants f o r  any 
th ree  given s t a r s  and can be precalculated.  
equations (14) can be obtained, but a l l  would be s imi la r  t o  those given by 
equations (16). 

Various solutions of the  s e t  of 

Therefore, equations (16), o r  sane similar t o  these, a r e  the  equations t h a t  
an astronaut could use t o  calculate  vehicle posi t ion.  
measurement u t i l i z e d  i n  equation (11) i s  used, of course, as one of t h e  star 
measurements i n  t h e  s e t  of equations (14).  
t i o n  f i x  would require, first, a calculat ion of the  quant i t ies  D, E, and F 
from t h e  four  measurements ra, el, a, 0 2, a, and ‘ 3 ,  a, second, nine s l i d e  ru l e  

multiplications,  and th i rd ,  several  additions and subtractions on a scratch pad. 
Inspection of t h e  expressions f o r  D, E, and F (eq. (l5)), however, indicates  
calculations involving a la rge  number of s ign i f i can t  f igures  which cannot be 
accurately performed on a s l i d e  ru le .  
shown f o r  determining Ar 

The star-to-body angle 

A s  shown by equations (16), a posi- 

A procedure s i m i l a r  t o  t h a t  previously 
can be employed by making use of precalculated values 
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. 

of D, E, and F f o r  a nominal t ra jec tory ,  as described i n  the  following 
section. 

To 

r n  COS 0 1  
Y 

pos i t  ion 

Figure 9.- &ample of variables involved in determining vehicle posit ion.  

Determination of t h e  measurement quant i t ies  D, E, and F.- The quantity 
D i s  i l l u s t r a t e d  i n  figure 9. By inspection of f igu re  9, t he  der iva t ive  of D 
i s  seen t o  be: 

or, f o r  t he  region i n  which a change i n  D i s  l i n e a r  with changes i n  rev 
and 0 1 ,  

Since D = 0 when ra cos 0 1  a = rn cos then aD = D, so t h a t  

From t h e  expression 

1, n - rn cos 0 1, a D = ra cos e 

it i s  seen t h a t  

4 
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and 

where rev and el are known values f o r  t h e  nominal t ra jec tory .  Equations 
s i m i l a r  t o  equations (18), (lg), and (20) a re  obtained f o r  E and F by 
replacing €I1 with e2 and € I 3 ,  respectively. 

Values of t h e  p a r t i a l s  aD/arev and aD/& are shown i n  f igure  10 f o r  t he  
example nominal t ra jec tory .  The data correspond t o  t h e  star Regulus, which l i e s  
near t h e  instantaneous Earth-Moon-vehicle plane throughout most of the  t r a j ec -  
tory.  (See f i g .  8 (b ) . )  The astronaut, then, would be supplied with informa- 
t ion ,  such as given i n  f igure  10, concerning three  preselected stars. This 
type of information, along with the  values f o r  &ev, A31, A32, and &3, 
would allow him t o  calculate  readi ly  the  quant i t ies  D, E, and F by equa- 
t i ons  s i m i l a r  t o  equation (18). The value of &ev i s  obtainable d i r ec t ly  
from equation (11). 

Linear region f o r  t he  quant i t ies  D, E, and F.- For equation (18) t o  be 
exactly correct, t he  p a r t i a l s  aD/arev and a D / & l  f o r  a given t i m e  must be 

constants. Inspection of equation (19) shows t h a t  aD/arev i s  a constant f o r  
a l l  values of rev. From equation (20), 

a2D - = -r cos 0 1  ev 
aI-3 1 

Hence, a t  a given t i m e ,  aD/&31 w i l l  be constant f o r  a value of 0 1  = 90°. 

40 104 

Nominal d i s t a n c e  from Earth cen te r ,  rev, h 

F i m e  10.- Variation over Earth-Moon dis- - 
aD tance of - and of - fo r  star ae arev 

Regulus. 

Actually, a D / h l  w i l l  be approximately 
constant over a large range of values of 
el ( f o r  example, 60° < 8 1  < 1200). S t a r  
se lec t ion  should not be necessarily 
l imited t o  t h i s  range of star-to-body 
angles, however, unless very l a rge  devia- 
t i ons  (g rea t e r  than +2O) from the  nomi- 
na l  0 are expected. This deviation of 
2O would correspond roughly t o  a 2-hour 
difference between the  ac tua l  in jec t ion  
t i m e  and a nominal in jec t ion  t i m e .  

CORRECTION FOR NONSIMULTANEOUS 

MEASUREMENTS 

I n  t h e  equations f o r  determination 
of range (eq. (11)) and posi t ion 

c 
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I 

(eqs . (16) ), a l l  four  measurements a re  
assumed t o  have been made simultaneously. 
Since simultaneous measurements a re  
usually not possible with the  same 
instrument, e r rors  would be introduced 
i n  t h e  r e su l t s  unless t he  measurements 
were corrected or converted t o  some com- 
mon t i m e .  
posi t ion f i x  i s  required) could be 
e i t h e r  before o r  a f t e r  t h e  ac tua l  t i m e  
of t h e  measurements. If t h e  t i m e  cor- 
respcnding t o  one of t h e  measurements i s  
made the  common t i m e ,  only th ree  meas- 
urements would have t o  be converted. 

T h i s  t i m e  ( f o r  which t h e  

The measurements can be converted 
t o  a common t i m e  ( s m a l l  increments of 
time, only) by use of precalculated data  
on t h e  r a t e  of change of angle with time 
along the  nominal t ra jec tory .  Examples 
of such data a re  shown i n  f igure  11 f o r  
several  stare, as w e l l  as f o r  t he  angu- 
l a r  measurement between the  Earth and 
t h e  Moon. (Table I1 iden t i f i e s  t he  
various stars used i n  t h i s  report . )  
These data  would be p rac t i ca l ly  t h e  same 
f o r  any other t r a j ec to ry  reasonably near 
t he  nominal, so t h a t  they would apply 
f o r  making corrections when off t h e  
nominal t ra jec tory .  It i s  of i n t e r e s t  
t o  note tha t  t h e  curve shown f o r  U / d t  
would be about the  same f o r  any t ra jec-  
t o ry  t o  the  Moon providing the  f l i g h t  

.. . 

Number 
. .  

I 

I1 

I11 

rv 
V 

V I  

10 

Nominal d i s t a n c e  

u 
20 30 40 x lo4 

from Earth cen te r ,  re,, km 

Figure 11.- R a t e  of change of measure- 
ment angles with time along ascent 
por t ion  of nominal. t ra jec tory ,  where 
A i s  angle between Earth and Moon 
centers and €II, €1111, em are 
angles between d i f f e ren t  stars and 
Earth center .  
i d e n t i f i c a t i o n  of stars.) 

(See t a b l e  I1 f o r  

TABLE 11.- STAR POSITIONS USED I N  ANALYSIS 

S t a r  

N a m e  
~~ 

Cap e l l a  

S i r iu s  

Procyon 

Regulus 

R ig i l  Kentaurus 

Vega 

2 

0.13862 

- .17870 
- .40895 
- .e5903 
- 37937 
.11866 

t I  11 

m 

0.68133 

.94126 

.90781 

.46641 

- .3og96 
- 77099 

n 

0 71873 
- .28652 
09295 
.21104 

- .87178 
.62570 

... ... 



time is  i n  the  neighborhood of 70 hours. Equations f o r  calculat ing dA/dt and 
d0/dt along a nomieal t r a j e c t o r y  are given i n  appendix B. 

I Lrars  I, 111, and I 

I n  converting a measurement t o  a common time, t h e  corresponding value of 
d0/dt or  dA/dt at  the  given range multiplied by t h e  time increment would be 
su f f i c i en t  ( f o r  converting over short  time i n t e r v a l s )  t o  ca lcu la te  the  incremen- 
tal angle t o  be added a lgebra ica l ly  t o  the  measured angle. The range would need 
t o  be known only approximately. For t r a j e c t o r i e s  launched near nominal injec-  
t i o n  time, t he  nominal range (a t  the  time of measurements) would be adequate, 
whereas f o r  t r a j e c t o r i e s  not launched near nominal i n j ec t ion  time the  approxi- 
mate range could be determined according t o  time from ac tua l  in jec t ion  time. 
Because the  correct ion t o  t h e  angle A would ord inar i ly  be the  l a rges t  ( f i g .  11) 
and a l so  because the  precalculations f o r  
more information on t h e  nominal t r a j ec to ry  ( see  appendix B),  it would 

dA/dt a r e  more extensive and require 

t o  use the  time at  which A i s  measured as the  common time. I n  t h i s  

1 

2oor 

be best  
case , 

I 

0 4 a 12 16 20 24 2a 32 36 40 x 104 

Nominal dis tance f r o m  Earth center ,  r km ev' 

Figure 12.- Accuracy of manual method over Earth-Moon distance; u of measure- 
ment e r r o r  is 10 arc-seconds. (See t a b l e  I1 for i d e n t i f i c a t i o n  of s t a r s . )  
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EBROR ANALYSIS OF METHOD 

"he calculated results shown i n  f igures  12  and 13 are typ ica l  of t h e  accu- 

It can be seen t h a t  after t h e  
racy obtainable with the  present method, providing t h e  range i s  determined by 
t h e  angular measurements given i n  equation (ll) . 
f i rs t  5 hours the  root-sum-square posi t ion e r ro r  i s  i n  t h e  neighborhood of 
35 kilometers. 
l a rge  e r rors  i n  range determination ( f ig .  6) when t h e  vehicle i s  i n  close prox- 
imity t o  t h e  Earth-Moon l i n e .  If, however, t h e  range i n  t h i s  region i s  deter- 
mined by an angular-diameter measurement of t h e  Earth, t h e  root-sum-square 
posi t ion e r r o r  could be reduced t o  40 kilometers o r  less. 

The large posi t ion e r rors  shown f o r  t h e  f irst  5 hours are due t o  

I n  t h e  analysis t h e  e r ro r s  i n  each of t h e  four  measurements were assumed 
t o  be uncorrelated. The r e s u l t s  are f o r  t he  case i n  which t h e  star used i n  . 
determining AI- l i e s  i n  o r  near t he  instantaneous Earth-Moon-vehicle plane; 
t h a t  is, t h e  range e r r o r  shown i n  f igure  6 would apply i n  t h i s  case. I n  t h e  
e r r o r  analysis, l i n e a r  perturbation theory w a s  used t o  calculate  values f o r  t h e  
root sum square of t h e  standard deviations of t h e  component posi t ion e r rors .  
(See appendix C f o r  t h e  per t inent  equations.) 
be considered as a measure of t he  posi t ion e r ror .  

This root-sum-square value can 

The r e su l t s  i n  figure 12 are f o r  standard deviations of measurement e r r o r  
of 10 arc-seconds i n  each of t h e  measurements. It should be noted t h a t  doubling 
t h e  measurement e r ro r  w i l l  approximately double t h e  position-determination 
e r ror .  The var ia t ion  i n  posi t ion e r ro r  with range i s  shown i n  figure 12  f o r  

0 4 

\ 
\ 

'\ . 

12 

I I 

-Radar-measurement method 
I I 

20 24 28 32 36 40 x 104 

Ngminal distance from Earth center, rev, lan 

Figure 13.- Comparison of manual method with t w o  other methods of high accu- 
racy; u 
distance-measurement error is 16 meters. 

of angular-measurement error is 10 arc-seconds and of radar- 
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cases i n  which two d i f fe ren t  sets of stars are used f o r  t h e  measurements. The 
accuracy f o r  e i t h e r  set i s  about t h e  same, and t h i s  f a c t  would be t r u e  for any 
combination of stars selected,  with three  exceptions. These three  exceptions 
a r e  t h a t  (1) t h e  star used f o r  the determination of & (eq. (11)) must l i e  
within about k30° of t h e  instantaneous Earth-Moon-vehicle plane ( f i g .  7) 2 (2)  
t h e  stars selected should be such t h a t  t h e  rate of change of e with t i m e  along 
any pa r t  of t h e  t r a j ec to ry  i s  comparatively la rge  (ref.  8); f o r  example, such as 
i s  indicated for t h e  stars Regulus and Procyon i n  f i g .  8(a); ( 3 )  t he  stars 
should not a l l  be at  approximately t h e  same locat ion.  

I n  f igure  13 t he  manual method is  shown t o  be about as accurate over most 
of t h e  Earth-Moon distance as two other position-determination methods of good 
accuracy. 
reference 6. The radar-measurement method consis ts  of t h e  same onboard s tar- to-  
body angular measurements as the manual method; however, t he  range i s  deter-  
mined by a highly accurate Earth-based radar measurement. The e r rors  shown f o r  
t h i s  method a r e  almost en t i r e ly  due t o  the  e r ro r s  i n  t h e  three  angular measure- 
ments. I n  the  five-angular-measurement method, f i v e  onboard angular measure- 
ments are used t o  determime vehicle posit ion.  The f i v e  angular measurements are 
t h e  included angles between stars and body centers. More specif ical ly ,  the  
measurements a re  t h e  included angles between each of th ree  stars and Earth ( o r  
Moon) center and between two of these stars and Moon (or  Earth) center. O f  a l l  
t he  opt ica l  methods which r e ly  completely on onboard sightings and which do not 
use s t a t i s t i c a l  procedures o r  information on a precalculated nominal t ra jec tory ,  
t h i s  five-measurement method i s  the  most accurate. 
because of t h e  complexity of t h e  equations, the onboard calculations f o r  t h i s  
method would require an automatic computer. 

The r e su l t s  shown f o r  these two other methods were obtained from 

(See r e f .  6.) However, 

SUMMABY OF PROCEDURES FOR MANUAL METHOD 

No attempt i s  made i n  t h i s  report  t o  systematize the present method. The 
required procedures are simple enough and any system used would be according t o  
individual preference . The various required calculations (both precalculations 
and onboard calculat ions)  are summarized i n  the  following out l ine i n  t h e  proper 
order, along with t h e  per t inent  equation numbers. 

Precalculations required f o r  t h e  nominal t r a j ec to ry  f o r  various times from nom- 
inal in jec t ion  time (assuming t h a t  nominal values of t h e  quant i t ies  l i s t e d  i n  
table I a re  known): 

. 

Angle A . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Equation (6) 
Angles el, €I2, and 8 . . . . . . . . . . . . . . . . . . . . .  Equation ( A l )  

Derivatives - 2, 2, and - dA . . . . . . . . . .  Equations (Bl) and ( B 3 )  
d e l  de de 

d t  ' d t  d t  d t  

P a r t i a l s  - 'rev and - are, . . . . . . . . . . . . . . .  Equations ( 5 )  and (7) 
& aB 
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Quantity c( - r2 by use of . . . . . .  Equations (A2) and ( A 4 )  
cos261 - cos281 

P a r t i a l s  -, -, - aF . . . .  Equations (19) and (20) 

According t o  t h e  selected s e t  of stars, calculate  the  

a D  aE aF a D  aE , and - 
arev are, &rev’ h,’ b2 ae3 

constants P, Q, R, and S (eqs. (l7)), as well as t h e  
other  constants appearing i n  equations (16) 

Onboard calculations required f o r  a posi t ion f i x  (assuming t h a t  t h e  four non- 
simultaneous measurements have been taken over a r e l a t i v e l y  short  t i m e  
i n t e rva l )  : 

Convert each measurement t o  a common t i m e  ( s m a l l  increments 

Determine t h e  values My Bl, A32, and A93, which a r e  t h e  
of time, only) by equations s i m i l a r  t o  

differences between the  ac tua l  and nominal angles 

Determine the  quant i t ies  D, E, and F from equations 

Calculate posi t ion nX,dy,& r e l a t ive  t o  nominal 

Calculate t r u e  posi t ion x,y,z by algebraical ly  adding Ax, 

. . . . . . . . . . .  Equations (21) 

Calculate t h e  value &rev . . . . . . . . . . . . . . . . . . .  Equation (11) 

similar t o  . . . . . . . . . . . . . . . . . . . . . . . . .  Equation (18) 

t r a j ec to ry  . . . . . . . . . . . . . . . . . . . . . . . . .  Equations (16) 

Ay, and aZ t o  nominal t r a j ec to ry  values 

The u n i t s  f o r  t h e  onboard calculations would be arc-seconds f o r  t he  angles 
and kilometers for t h e  range and posi t ion values. 

A t r i a l  calculat ion of a posi t ion f2x which would apply t o  an Earth-Moon 
t r a j ec to ry  w a s  performed i n  approximately 15 minutes. For t h i s  calculation it 
w a s  assumed tha t  the  measurements had been recorded. With two persons working 
together, t he  time could be reduced. 

CONCLUDING REMARKS 

A simple method for manual determination of posi t ion of a space vehicle 
has been presented. 
tory; however, it would apply equally as w e l l  t o  an interplanetary t ra jec tory .  

The method as presented has been applied t o  a lunar t r a j ec -  

The method makes use of t h e  knowledge of t h e  distance between the  Earth 
and t h e  Moon (or t h e  dis tance between a planet and t h e  Sun) t o  obtain an accu- 
rate measure of posi t ion r e l a t ive  t o  a precalculated nominal or reference tra- 
jectory.  The l i n e a r i t y  charac te r i s t ics  of t he  method are such t h a t  good accu- 
racy can be obtained even though differences as la rge  as 2 hours ex i s t  between 
ac tua l  and nominal in jec t ion  time. 
t o  measure angles, t h e  only other  requirements f o r  t h e  navigator a re  t i m e -  
h i s tory  information on t h e  nominal t ra jectory,  various charts  o r  t ab le s  of 

I n  addition t o  t h e  one type of instrument 
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precalculated information, and several  simple equations which can be solved 
adequately with a s l i d e  ru le .  
ments have been made the  method would require no more than a t o t a l  of 15 minutes 
t o  calculate  a pos i t ion  f i x .  

It has been determined t h a t  a f t e r  t h e  measure- 

From r e s u l t s  of an e r r o r  analysis,  t h e  accuracy .of the  method a f t e r  about 
t h e  f i rs t  5 hours from the  Earth w a s  shown t o  be approximately constant over 
t h e  remaining Earth-Moon distance.  I n  t h i s  region t h e  e r ro r  i n  pos i t ion  deter-  
mination w a s  shown t o  be i n  t h e  neighborhood of 35 kilometers. For the  times 
within t h e  first 5 hours, close proximity of t h e  vehicle  t o  the  Earth-Moon l i n e  
causes la rge  e r r o r  i n  pos i t ion  determination unless range is  determined by a 
measurement of t he  angular diameter of t he  Earth. 
accuracy charac te r i s t ics ,  p rac t i ca l ly  any s e t  of th ree  s t a r s  selected f o r  the  
measurements would give good r e s u l t s  providing t h a t  t he  s t a r  used i n  the  range 
determination l i e s  within about f30° of the  instantaneous Earth-Moon-vehicle 
plane. 

Also, i n  r e l a t ion  t o  the  

Under l i n e a r  assumptions, a manual guidance procedure could be developed 
which makes use of t h e  pos i t ion  measurements. The same number of calculat ions 
as f o r  two pos i t ion  f i x e s  could determine the  ve loc i ty  changes f o r  performing 
a midcourse correction. The main l imi t a t ion  t o  such a procedure would be the  
dis tance the  f l i g h t  t r a j ec to ry  could be allowed t o  deviate from the  nominal 
t r a j ec to ry .  i 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Haapton, Va., July 20, 1964. 

24 



APPENDIX A 

EQUATIONS FOR CALCULATING 6, e, AND c 

The angles 6 and e ( f i g .  14),  as well  as the  value c, pertaining t o  a 
nominal t r a j ec to ry  can be precalculated f o r  any given star with known d i r ec t ion  
cosines 2,  m, and n by t h e  following equations. 

To s ta r  

.-Moon 

Moon 

-vehicle 

Figure 14.- I l l u s t r a t i o n  showing the vectors 1; and h. 

The angle 8, which i s  t h e  angle frdm the  vehicle between t h e  l i n e s  of 
s igh t  t o  a s t a r  and a body center  (Earth, f o r  example), 
product of t he  pos i t ion  vectors of t h e  Earth center and 

i s  obtained from the  dot 
s t a r  

By defining a vector h perpendicular t o  the  instantaneous Earth-Moon-vehicle 
plane, t h e  angle 
and i t s  project ion i n  t h i s  plane, i s  obtained from t h e  dot product of t h e  vec- 
t o r  E and the  posi t ion vector of t he  s t a r  

6, which i s  the  angle between t h e  l i n e  of s igh t  t o  t h e  star 

IZhX + I? + *, I -  s i n  6 = 

where the  absolute value can be used such t h a t  
values f o r  h,, hy, hZ, and h are obtained from the  cross product of t h e  
pos i t ion  vectors of t h e  Earth and Moon centers.  Thus, 

Oo 5 6 4 goo and where t h e  
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and 

The sign of t h e  quantity c i n  equation (11) is  determined by the  posf- 
rev. 
E, t h e  pkojection of 

t i o n  of t h e  star with respect t o  the  Earth-vehicle l i n e  
pos i t ive  (negative) i f ,  as viewed from t h e  d i rec t ion  of 
t h e  l i n e  t o  t h e  star i n  t h e  instantaneous Earth-Moon-vehicle plane ‘is t a  t h e  
r igh t  ( l e f t )  of t h e  Earth-vehicle l i n e .  A s  shown i n  f igure  14, t h e  r e l a t i v e  
direct ions of these t w o  l i n e s  a t  a given time along a nominal t r a j ec to ry  can be 
determined by first defining a veczor 
containing t h e  vectors rev and h. 

The,sign i s  

5 which i s  perpendicular t o  t h e  plane 

The vector b i s  obtained from t h e  cross product of t h e  vectors Tev 
and such t h a t  t h e  components of are given by 

b, = Xevhy - Yevhx 

where t h e  values f o r  hx, hy, and hZ are given by equations ( A j ) .  N e x t ,  t h e  
dot product of t h e  posi t ion vector of t he  star and t h e  vector 
t he  component of t h e  star vector along the  vector 
2bx + mby + nbz 

If t h i s  term i s  posit ive,  t h e  project ion of t h e  star vector 
b 

i n  the  instantaneous Earth-Moon-vehicle plane i s  t o  t h e  r igh t  of t h e  Earth- 
vehicle l i n e  rev so  t h a t  t h e  quantity c i s  given as 

b w i l l  y i e ld  
b which is  given by t h e  term 

. 

- 

2bx + mb + nb, 

IZbx + mby + nb, 
Y 

I 
c =  (A4 1 
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AF'PEXDIX B 

EQUATIONS FOR CALCULATING RATE OF CHANGE OF 

MEASUREMENT WITH TIME 

The r a t e  of change of t h e  measurement 8 (angle between s t a r  and Earth 
center) with time along a nominal t ra jec tory  i s  given by 

de - &I &ev &I dYev &I dzev - - - -+ - -+- -  
d t  ax, d t  &ev d t  azev d t  

where dXev/dt, dyev/dt, and dzev/dt a r e  known values f o r  the  nominal t ra jec-  
to ry  and, as can be determined from equations given i n  reference 8, the  p a r t i a l s  
f o r  the  angular measurement 8 a re  

The r a t e  of change of t he  measurement A (angle between Earth and Moon 
centers) with t i m e  along the  nominal t ra jec tory  i s  given by 

aA d~ +-- a% d t  

where dXev/dt, dyev/dt, dzev/dt, aX,/dt, dym/dt , and dzm/dt a r e  known 
values f o r  t h e  nominal t ra jec tory .  The p a r t i a l s  of A with respect t o  the  

... .. , ,., , , 



Earth a r e  determlned from equations (B2) by replacing the  d i rec t ion  cosines of 
t he  stars 2 ,  m, and n with the  d i rec t ion  cosines of t he  Moon: 

2 
- - -  

The p a r t i a l s  of A with respect t o  the  Moon a re  determined from equa- 
t i ons  (B2)  by replacing Xev, Yev, Zev, and rev with %vr Ymv, zmv, and 
rm, respectively,  and by replacing t h e  d i rec t ion  cosines of t he  s t a r s  m, 
and n with t h e  d i r ec t ion  cosines of t he  Earth: 

2 ,  
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APPEXDIX c 

EQUATIONS FOR ERROR ANALYSIS OF METHOD 

For a l i n e a r  perturbation procedure, which i s  used i n  t h i s  report  t o  
analyze posi t ion error ,  t h e  system of equations (1) di f fe ren t ia ted  with respect 
t o  el y ie lds  equations f o r  determining the  e f f ec t  of e r rors  i n  0 1  on t h e  
posi t ion coordinates x, y, and 2: 

ay aZ 
a1 bl 

+ ml - + nl - = -r s i n  ax 
2 1  - 
bl 

When l i n e a r  perturbation i s  used, t h e  p a r t i a l s  are, of course, assumed t o  be 
constants. 
s t an t  over var ia t ions of 0 of kl.5'. These changes i n  0 would represent 
t r a j e c t o r i e s  which are thousands of kilometers off the  nominal t ra jec tory .  

D a t a  i n  reference 6 show t h a t  these p a r t i a l s  are essent ia l ly  con- 

A solut ion of t h e  simultaneous equations (Cl) yields:  

aZ r s i n  0 1  P23 - R22 

QR - PS - -  - 
bl 

where P, Q, R, and S are defined by equations (17). 

I n  a similar manner, t h e  p a r t i a l s  f o r  e2, 03,  and r can be determined 
as 

aZ RZlr s i n  e2 
- =  
b2 QR - PS 



The 'standard deviations of t he  e r rors  i n  t h e  x-, y-, and z-directions due 
t o  e r rors  i n  t h e  measurements are, then, 

2 2 2 2 
2 

oz - = (a,)2 = (k De) + (g oO) + (e 
+ (2 or) j 

The root-sum-square (rss) of t h e  posi t ion e r r o r  due t o  e r rors  i n  t h e  three 
star-to-body angular measurements and i n  t h e  range measurement (which includes 



one of t h e  star-to-body angular measurements and t h e  Earth-Moon angular meas- 
urement) is- 

Actually, t h e  quant i t ies  ax/ar, &y/ar, and a z / b  need not be calculated 
s ince t h e  sum of t he  las t  terms i n  each of equations ( C 2 )  i s  approximately 
equal t o  t h e  variance of t h e  range e r ro r  determined from equation (ll), where 
(for range t o  t h e  Earth) 
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